Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.501
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 281, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570417

RESUMO

Streptococcus pneumoniae can cause diseases with high mortality and morbidity. The licensed vaccines are based on capsular polysaccharides and induce antibodies with low cross reactivity, leading to restricted coverage of serotypes. For surpassing this limitation, new pneumococcal vaccines are needed for induction of broader protection. One important candidate is the pneumococcal surface protein A (PspA), which can be classified in 6 clades and 3 families. We have reported an efficient process for production and purification of untagged recombinant PspA from clade 4 (PspA4Pro). We now aim to obtain a highly pure recombinant PspA from clade 1 (PspA1) to be included, together with PspA4Pro, in a vaccine formulation to broaden response against pneumococci. The vector pET28a-pspA1 was constructed and used to transform Escherichia coli BL21(DE3) strain. One clone with high production of PspA1 was selected and adapted to high-density fermentation (HDF) medium. After biomass production in 6 L HDF using a bioreactor, the purification was defined after testing 3 protocols. During the batch bioreactor cultivation, plasmid stability remained above 90% and acetate formation was not detected. The final protein purification process included treatment with a cationic detergent after lysis, anion exchange chromatography, cryoprecipitation, cation exchange chromatography, and multimodal chromatography. The final purification process showed PspA1 purity of 93% with low endotoxin content and an overall recovery above 20%. The novel established process can be easily scaled-up and proved to be efficient to obtain a highly pure untagged PspA1 for inclusion in vaccine formulations. KEY POINTS: • Purification strategy for recombinant PspA1 from Streptococcus pneumoniae • Downstream processing for untagged protein antigens, the case of PspA1 • Purification strategy for PspA variants relies on buried amino acids in their sequences.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Proteínas de Bactérias/química , Streptococcus pneumoniae/genética , Vacinas Pneumocócicas/metabolismo , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
2.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 42(4): 172-178, Abr. 2024. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-232171

RESUMO

Introducción: El programa de vacunación universal con la vacuna antineumocócica conjugada 13-valente (VNC13) se implantó en Andalucía en diciembre de 2016. Métodos: Estudio transversal de colonización nasofaríngea por Streptococcus pneumoniae. Se seleccionó a 397 niños sanos en centros de atención primaria de Sevilla durante los periodos 1/4/2018-28/2/2020 y 1/11/2021-28/2/2022 (periodo VNC13). Se utilizó una colección histórica de un estudio de colonización desarrollado en niños sanos y con infección respiratoria superior entre el 1/01/2006 y el 30/06/2008 (periodo VNC7) para comparar las distribuciones de serotipos/genotipos y las tasas de resistencias antibióticas. Resultados: Un total de 76 (19%) niños estaban colonizados con S. pneumoniae en el periodo VNC13 y se dispuso de 154 aislamientos del periodo VNC7. La colonización por serotipos incluidos en VNC13 disminuyó significativamente entre los periodos VNC13 y VNC7 (11 vs. 38%; p=0,0001); los serotipos 19F (8%), 3 (1%) y 6B (1%) fueron los únicos serotipos vacunales circulantes. Los serotipos 15B/C y 11A fueron los serotipos no VNC13 más prevalentes durante el periodo VNC13 (14% y 11%, respectivamente); este último se incrementó de forma significativa entre periodos de tiempo (p=0,04). El serotipo 11A solo se asoció en el periodo VNC13 con variantes resistentes a la ampicilina del clon Spain9V-ST156 (ST6521 y genéticamente relacionado ST14698), no detectados en el periodo anterior. Conclusiones: Hubo una circulación muy residual de los serotipos vacunales durante el periodo VNC13, con excepción del serotipo19F. El serotipo 11A se incrementó de forma significativa entre los periodos VNC13 y VNC7 por expansión clonal del genotipo resistente a la ampicilina ST6521.(AU)


Background: The 13-valent pneumococcal conjugate vaccine (PCV13) universal vaccination program was introduced in December 2016 in Andalusia. Methods: A cross-sectional study was conducted on the molecular epidemiology of pneumococcal nasopharyngeal colonization. A total of 397 healthy children were recruited from primary healthcare centres in Seville for the periods 1/4/2018 to 28/2/2020 and 1/11/2021 to 28/2/2022 (PCV13 period). Data from a previous carriage study conducted among healthy and sick children from 1/01/2006 to 30/06/2008 (PCV7 period) were used for comparison of serotype/genotype distributions and antibiotic resistance rates. Results: Overall, 76 (19%) children were colonized with S. pneumoniae during the PCV13 period and there were information available from 154 isolates collected during the PCV7 period. Colonization with PCV13 serotypes declined significantly in the PCV13 period compared with historical controls (11 vs. 38%, P=0.0001), being serotypes 19F (8%), 3 (1%) and 6B (1%) the only circulating vaccine types. Serotypes 15B/C and 11A were the most frequently identified non-PCV13 serotypes during the PCV13 period (14% and 11%, respectively); the later one increased significantly between time periods (P=0.04). Serotype 11A was exclusively associated in the PCV13 period with ampicillin-resistant variants of the Spain9V-ST156 clone (ST6521 and genetically related ST14698), not detected in the preceding period. Conclusions: There was a residual circulation of vaccine types following PCV13 introduction, apart from serotype 19F. Serotype 11A increased between PCV13 and PCV7 periods due to emergence and clonal expansion of ampicillin-resistant genotype ST6521.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Epidemiologia Molecular , Programas de Imunização , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/genética , Infecções Pneumocócicas , Ampicilina , Espanha , Estudos Transversais , Portador Sadio
3.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 42(4): 179-186, Abr. 2024. graf, tab
Artigo em Espanhol | IBECS | ID: ibc-232172

RESUMO

Introducción: Streptococcus pneumoniae causa enfermedades graves en la población susceptible. La vacuna neumocócica conjugada (PCV) 13-valente (PCV13) se incluyó en el calendario infantil en 2011. Este estudio analiza la evolución de los serotipos de neumococo y de sus resistencias tras la PCV13. Métodos: Se incluyeron los neumococos serotipados en Galicia en 2011-2021. Se estudió la sensibilidad antibiótica siguiendo criterios EUCAST. Se analizaron los datos en 3 subperíodos: inicial (2011-2013), medio (2014-2017) y final (2018-2021). Se calcularon las prevalencias de los serotipos y el porcentaje de resistencia a los antibióticos más representativos. Resultados: Se incluyeron 2.869 aislados. Inicialmente el 42,7% presentaba tipos capsulares incluidos en la PCV13, frente al 15,4% al final. Los incluidos en la PCV20 y no en la PCV13 y PCV15 fueron el 12,5% inicialmente y el 41,3% al final. El 26,4% de los serotipos a lo largo del estudio no estaban incluidos en ninguna vacuna. La prevalencia del serotipo 8 se multiplicó casi por 8 y la del 12F se triplicó. El serotipo 19A fue el más resistente inicialmente. La resistencia de los serotipos 11A y 15A aumentó a lo largo del estudio. Conclusiones: La introducción de la PCV13 en la población infantil determinó un cambio en los serotipos de neumococo hacia los incluidos en la PCV20 y los no incluidos en ninguna vacuna. El serotipo 19A inicialmente fue el más resistente, y el 15A, no incluido en ninguna vacuna, merece un especial seguimiento. El serotipo 8, que fue el que más se incrementó, no mostró resistencia destacable.(AU)


Introduction: Streptococcus pneumoniae causes serious diseases in the susceptible population. The 13-valent pneumococci conjugate vaccine (PCV13) was included in the children's calendar in 2011. The objective of the study was to analyze the evolution of pneumococcal serotypes and their resistance after PCV13. Methods: This study included the pneumococci serotyped in Galicia in 2011-2021. Antibiotic susceptibility was analyzed following EUCAST criteria. The data was analyzed in 3 sub-periods: initial (2011-2013), middle (2014-2017) and final (2018-2021). The prevalence of serotypes and their percentage of resistance to the most representative antibiotics were calculated. Results: A total of 2.869 isolates were included. Initially, 42.7% isolates presented capsular types included in PCV13, compared to 15.4% at the end. Those included in PCV20 and not in PCV13 and PCV15 were 12.5% at baseline and 41.3% at the end; 26.4% of the isolates throughout the study had serotypes not included in any vaccine. The prevalence of serotype 8 multiplied almost by 8 and that of 12F tripled. The 19A serotype was initially the most resistant, while the resistance of serotypes 11A and 15A increased throughout the study. Conclusions: The introduction of PCV13 in the pediatric population determined a change in pneumococcal serotypes towards those included in PCV20 and those not included in any vaccine. Serotype 19A was initially the most resistant and the 15A, not included in any vaccine, deserves special follow-up. Serotype 8, which increased the most, did not show remarkable resistance.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Streptococcus pneumoniae/genética , Resistência Microbiana a Medicamentos , Infecções Pneumocócicas , Prevalência , Sorogrupo , Espanha , Doenças Transmissíveis , Microbiologia
4.
Sci Rep ; 14(1): 8788, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627456

RESUMO

Infections caused by multidrug-resistant Streptococcus pneumoniae remain the leading cause of pneumonia-related deaths in children < 5 years globally, and mutations in penicillin-binding protein (PBP) 2 × have been identified as the major cause of resistance in the organism to beta-lactams. Thus, the development of new modulators with enhanced binding of PBP2x is highly encouraged. In this study, phenolics, due to their reported antibacterial activities, were screened against the active site of PBP2x using structure-based pharmacophore and molecular docking techniques, and the ability of the top-hit phenolics to inhibit the active and allosteric sites of PBP2x was refined through 120 ns molecular dynamic simulation. Except for gallocatechin gallate and lysidicichin, respectively, at the active and allosteric sites of PBP2x, the top-hit phenolics had higher negative binding free energy (ΔGbind) than amoxicillin [active site (- 19.23 kcal/mol), allosteric site (- 33.75 kcal/mol)]. Although silicristin had the best broad-spectrum effects at the active (- 38.41 kcal/mol) and allosteric (- 50.54 kcal/mol) sites of PBP2x, the high thermodynamic entropy (4.90 Å) of the resulting complex might suggest the need for its possible structural refinement for enhanced potency. Interestingly, silicristin had a predicted synthetic feasibility score of < 5 and quantum calculations using the DFT B3LYP/6-31G+ (dp) revealed that silicristin is less stable and more reactive than amoxicillin. These findings point to the possible benefits of the top-hit phenolics, and most especially silicristin, in the direct and synergistic treatment of infections caused by S. pneumoniae. Accordingly, silicristin is currently the subject of further confirmatory in vitro research.


Assuntos
Amoxicilina , Streptococcus pneumoniae , Criança , Humanos , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/genética , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Amoxicilina/farmacologia , Resistência às Penicilinas/genética , Proteínas de Bactérias/metabolismo
5.
PLoS Genet ; 20(3): e1011188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442125

RESUMO

Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4. By evaluating native locus mutants of each regulator that result in constitutively active or repressed expression, we establish that growth defects in planktonic culture are associated with constitutive repression of gene expression, while constitutive activation of gene expression is rarely deleterious. In contrast, in mouse nasal carriage and pneumonia models, strains with either constitutively active and repressed gene expression are significantly less fit than matched control strains. Furthermore, two RNA-regulated pathways, FMN synthesis/transport and pyrimidine synthesis/transport display exceptional sensitivity to mis-regulation or constitutive gene repression in both planktonic culture and in vivo environments. Thus, despite lack of obvious phenotypes associated with constitutive gene expression in vitro, the fitness benefit conferred on bacteria via fine-tuned metabolic regulation through cis-acting regulatory RNAs is substantial in vivo, and therefore easily sufficient to drive the evolution and maintenance of diverse RNA regulatory mechanisms.


Assuntos
RNA , Streptococcus pneumoniae , Animais , Camundongos , Streptococcus pneumoniae/genética , RNA/metabolismo , Virulência/genética , Fenótipo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Med Microbiol Immunol ; 213(1): 3, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448747

RESUMO

Multidrug-resistant clinical isolates of Moraxella catarrhalis have emerged, increasing the demand for the identification of new treatment and prevention strategies. A thorough understanding of how M. catarrhalis can establish an infection and respond to different stressors encountered in the host is crucial for new drug-target identification. Formaldehyde is a highly cytotoxic compound that can be produced endogenously as a by-product of metabolism and exogenously from environmental sources. Pathways responsible for formaldehyde detoxification are thus essential and are found in all domains of life. The current work investigated the role of the system consisting of the S-hydroxymethyl alcohol dehydrogenase (AdhC), a Zn-dependent class III alcohol dehydrogenase, and the S-formyl glutathione hydrolase (FghA) in the formaldehyde detoxification process in M. catarrhalis. Bioinformatics showed that the components of the system are conserved across the species and are highly similar to those of Streptococcus pneumoniae, which share the same biological niche. Isogenic mutants were constructed to study the function of the system in M. catarrhalis. A single fghA knockout mutant did not confer sensitivity to formaldehyde, while the adhC-fghA double mutant is formaldehyde-sensitive. In addition, both mutants were significantly cleared in a murine pulmonary model of infection as compared to the wild type, demonstrating the system's importance for this pathogen's virulence. The respective phenotypes were reversed upon the genetic complementation of the mutants. To date, this is the first study investigating the role of the AdhC-FghA system in formaldehyde detoxification and pathogenesis of M. catarrhalis.


Assuntos
Moraxella catarrhalis , Streptococcus pneumoniae , Animais , Camundongos , Moraxella catarrhalis/genética , Streptococcus pneumoniae/genética , Formaldeído , Glutationa , Hidrolases
7.
Future Microbiol ; 19: 449-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497912

RESUMO

Aim: This study aimed to understand the current level of linezolid (LNZ) resistance in Streptococcus pneumoniae isolates reported over the past 10 years. Material & methods: An electronic search was conducted for the following keywords: ((Streptococcus pneumoniae [title/abstract]) OR (Pneumococcus [title/abstract]) OR (Pneumococci [title/abstract]) AND (linezolid [title/abstract]) OR (Zyvox [title/abstract])) OR (Zyvoxid [title/abstract])). Result: Out of all the studies, 80 had a cross-sectional design, while 11 followed a cohort approach. The prevalence of LNZ resistance among S. pneumoniae isolates ranged from 0% to 4.86%. Discussion: Urgent, high-powered, randomized, controlled trials with participants from endemic regions are needed to gain a comprehensive understanding of the impact on and significance of LNZ treatment to patients.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Humanos , Linezolida/farmacologia , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia , Prevalência , Estudos Transversais , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
8.
Microbiol Spectr ; 12(4): e0188523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488366

RESUMO

Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE: Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.


Assuntos
Streptococcus pneumoniae , Streptococcus , Streptococcus pneumoniae/genética , Streptococcus/genética , Polissacarídeos , Sorogrupo , Vacinas Pneumocócicas , Engenharia Genética , Cápsulas Bacterianas , Polissacarídeos Bacterianos
9.
Sci Rep ; 14(1): 4174, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378681

RESUMO

A comprehensive understanding of the dynamics of Streptococcus pneumoniae colonization in conjunction with respiratory virus infections is essential for enhancing our knowledge of the pathogenesis and advancing the development of effective preventive strategies. Therefore, a case-control study was carried out in Addis Ababa, Ethiopia to investigate the colonization rate of S. pneumoniae and its coinfection dynamics with respiratory viruses among children under the age of 5 years. Samples from the nasopharyngeal and/or oropharyngeal, along with socio-demographic and clinical information, were collected from 420 children under 5 years old (210 cases with lower respiratory tract infections and 210 controls with conditions other than respiratory infections.). A one-step Multiplex real-time PCR using the Allplex Respiratory Panel Assays 1-4 was performed to identify respiratory viruses and bacteria. Data analysis was conducted using STATA software version 17. The overall colonization rate of S. pneumoniae in children aged less than 5 years was 51.2% (215/420). The colonization rates in cases and controls were 54.8% (115/210) and 47.6% (100/210), respectively (p = 0.14). Colonization rates were observed to commence at an early age in children, with a colonization rate of 48.9% and 52.7% among infants younger than 6 months controls and cases, respectively. The prevalence of AdV (OR, 3.11; 95% CI [1.31-8.19]), RSV B (OR, 2.53; 95% CI [1.01-6.78]) and HRV (OR, 1.7; 95% CI [1.04-2.78]) tends to be higher in children who tested positive for S. pneumoniae compared to those who tested negative for S. pneumoniae. Further longitudinal research is needed to understand and determine interaction mechanisms between pneumococci and viral pathogens and the clinical implications of this coinfection dynamics.


Assuntos
Coinfecção , Infecções Respiratórias , Vírus , Lactente , Criança , Humanos , Pré-Escolar , Streptococcus pneumoniae/genética , Estudos de Casos e Controles , Etiópia/epidemiologia , Vírus/genética , Nasofaringe
10.
Microbiol Immunol ; 68(4): 155-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311883

RESUMO

Streptococcus pneumoniae is a causative agent of community-acquired pneumonia. Upon pneumococcal infection, innate immune cells recognize pneumococcal lipoproteins via Toll-like receptor 2 and induce inflammation. Here, we generated a strain of S. pneumoniae deficient in lipoprotein signal peptidase (LspA), a transmembrane type II signal peptidase required for lipoprotein maturation, to investigate the host immune response against this strain. Triton X-114 phase separation revealed that lipoprotein expression was lower in the LspA-deficient strain than in the wild-type strain. Additionally, the LspA-deficient strain decreased nuclear factor-κB activation and cytokine production in THP-1 cells, indicating impaired innate immune response against the strain.


Assuntos
Ácido Aspártico Endopeptidases , Streptococcus pneumoniae , Receptor 2 Toll-Like , Animais , Camundongos , Streptococcus pneumoniae/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas de Bactérias/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos Endogâmicos C57BL
11.
Theor Popul Biol ; 156: 77-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331222

RESUMO

Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization µ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Estudos Transversais , Nasofaringe/microbiologia , Bactérias
12.
Biomolecules ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397415

RESUMO

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn's pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections.


Assuntos
Eflornitina , Streptococcus pneumoniae , Humanos , Eflornitina/farmacologia , Streptococcus pneumoniae/genética , Poliaminas/metabolismo , Glucose/metabolismo , Expressão Gênica
13.
BMC Infect Dis ; 24(1): 164, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326753

RESUMO

BACKGROUND: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pneumoniae and Staphylococcus aureus are major bacterial causes of lower respiratory tract infections (LRTIs) globally, leading to substantial morbidity and mortality. The rapid increase of antimicrobial resistance (AMR) in these pathogens poses significant challenges for their effective antibiotic therapy. In low-resourced settings, patients with LRTIs are prescribed antibiotics empirically while awaiting several days for culture results. Rapid pathogen and AMR gene detection could prompt optimal antibiotic use and improve outcomes. METHODS: Here, we developed multiplex quantitative real-time PCR using EvaGreen dye and melting curve analysis to rapidly identify six major pathogens and fourteen AMR genes directly from respiratory samples. The reproducibility, linearity, limit of detection (LOD) of real-time PCR assays for pathogen detection were evaluated using DNA control mixes and spiked tracheal aspirate. The performance of RT-PCR assays was subsequently compared with the gold standard, conventional culture on 50 tracheal aspirate and sputum specimens of ICU patients. RESULTS: The sensitivity of RT-PCR assays was 100% for K. pneumoniae, A. baumannii, P. aeruginosa, E. coli and 63.6% for S. aureus and the specificity ranged from 87.5% to 97.6%. The kappa correlation values of all pathogens between the two methods varied from 0.63 to 0.95. The limit of detection of target bacteria was 1600 CFU/ml. The quantitative results from the PCR assays demonstrated 100% concordance with quantitative culture of tracheal aspirates. Compared to culture, PCR assays exhibited higher sensitivity in detecting mixed infections and S. pneumoniae. There was a high level of concordance between the detection of AMR gene and AMR phenotype in single infections. CONCLUSIONS: Our multiplex quantitative RT-PCR assays are fast and simple, but sensitive and specific in detecting six bacterial pathogens of LRTIs and their antimicrobial resistance genes and should be further evaluated for clinical utility.


Assuntos
Antibacterianos , Infecções Respiratórias , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Staphylococcus aureus/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Multiplex/métodos , Farmacorresistência Bacteriana , Bactérias/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/genética , Klebsiella pneumoniae/genética
14.
J Microbiol Methods ; 219: 106899, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38360298

RESUMO

AIMS: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are important causes of bacterial meningitis. In this study, the DNA binding site of the wild type Taq DNA polymerase was modified to produce a mutant enzyme with enhanced DNA affinity and PCR performance. The engineered and the wild type enzymes were integrated into qPCR-based assays for molecular detection of S. pneumoniae, N. meningitidis, H. influenzae, and serogroups and serotypes of these three pathogens. METHODS: Bio-Speedy® Bacterial DNA Isolation Kit (Bioeksen R&D Technologies, Turkiye) and 2× qPCR-Mix for hydrolysis probes (Bioeksen R&D Technologies, Turkiye) and CFX96 Instrument (Biorad Inc., USA) were used for all molecular analyses. Spiked negative clinical specimens were tested using the developed qPCR assays and the culture-based conventional methods for the analytical performance evaluation. RESULTS: All qPCR assays did not produce any positive results for the samples spiked with potential cross-reacting bacteria. Limit of detection (LOD) of the assays containing the mutant enzyme was 1 genome/reaction (10 cfu/mL sample) which is at least 3 times lower than the previously reported LOD levels for DNA amplification based molecular assays. LODs for the spiked serum and cerebrospinal fluid (CSF) samples decreased 2.3-4.7 and 1.2-3.5 times respectively when the mutant enzyme was used instead of the wild type Taq DNA polymerase. CONCLUSIONS: It is possible to enhance analytical sensitivity of qPCR assays targeting the bacterial agents of meningitis by using an engineered Taq DNA polymerase. These qPCR-based assays can be used for direct detection and serogrouping / serotyping of S. pneumoniae, N. meningitidis and H. influenzae at concentrations close to the lower limit of medical decision point.


Assuntos
Meningites Bacterianas , Neisseria meningitidis , Humanos , Neisseria meningitidis/genética , Streptococcus pneumoniae/genética , Taq Polimerase , Haemophilus influenzae/genética , Meningites Bacterianas/líquido cefalorraquidiano , Bactérias/genética , DNA
15.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270581

RESUMO

Pakistan is amongst the four countries with the highest number of pneumococcal deaths. While the PCV10 vaccine was introduced in Pakistan in October 2012, data regarding the impact of the vaccine on the population dynamics of Streptococcus pneumoniae in Pakistan remain obscure. Using whole genome sequencing of 190 isolates (nasopharyngeal carriage=75, disease=113, unknown sites=2) collected between 2002 and 2020, this study presents characteristics of pneumococcal strains in Pakistan in the pre- and post-vaccine era. The isolates were characterized on the basis of serotype distribution, genetic lineages (or Global Pneumococcal Sequence Cluster, GPSC) and antibiotic resistance. A high level of diversity in serotype and genetic lineages of pneumococci was observed in Pakistan. Among 190 isolates, we identified 54 serotypes, 67 GPSCs and 116 sequence types (STs) including 23 new STs. The most prevalent GPSCs and their associated serotypes in nasopharyngeal carriage were GPSC54 (expressing serotype 9V), GPSC5 (15A and 7B, and serogroup 24), GPSC25 (15B/15C), GPSC67 (18C) and GPSC376 (6A and 6D). Similarly, among 113 disease-causing isolates, the most prevalent GPSC/serotype combinations were GPSC2 (serotype 1), GPSC10 (serotypes 14, 10A, 19A and 19F), GPSC43 (serotypes 13, 11A, 23B, 35A and 9V), GPSC67 (serotypes 18A and 18C) and GPSC642 (serotype 11A). Of the 190 isolates, the highest levels of resistance were observed against penicillin (58.9 %, n=122), erythromycin (29.5 %, n=56), clindamycin (13.2 %, n=25), co-trimoxazole (94.2 %, n=179) and tetracycline/doxycycline (53.2 %, n=101). A higher proportion of disease-causing isolates were multidrug resistant as compared to carriage isolates (54 % vs 25 %). Our data suggest limited coverage of PCV10 in nasopharyngeal (21.6 %, 16/74) as well as disease-causing (38.1 %, 16/42) isolates among children ≤5 years old; however, higher valent vaccine PCV13 would increase the coverage rates to 33.8 % in nasopharyngeal and 54.8 % in disease-causing isolates, whereas PCV24/25 would offer the highest coverage rates. Owing to the diversity of serotypes observed during the post-vaccine period, the suggested inclusion of serotype in future vaccine formulations will require investigations with larger data sets with an extended temporal window. This article contains data hosted by Microreact.


Assuntos
Vacinas Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Pré-Escolar , Paquistão/epidemiologia , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia
16.
Nat Commun ; 15(1): 355, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191887

RESUMO

Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.


Assuntos
Genômica , Streptococcus pneumoniae , Adulto , Recém-Nascido , Criança , Lactente , Humanos , Pré-Escolar , Streptococcus pneumoniae/genética , Imunoglobulina G , Imunidade nas Mucosas , Antígenos de Bactérias
17.
Biomed Res Int ; 2024: 5917667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283072

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is an important pathogen worldwide that causes pneumococcal infections which are related to high rates of morbidity and mortality especially in young children, older adults, and immune-compromised persons. Antibiotic resistance in S. pneumoniae is a serious problem across the world from time to time, resulting in treatment failure and diminished value of older medicines. Therefore, the objective of this study was to identify new putative drug targets against S. pneumoniae serotype 23F by using subtractive genomics. By using bioinformatics tools such as NCBI, UniProt KB, PDB, KEGG, DEG, PSORTb, CD hit, DrugBank database, and other softwares, proteins involved in unique metabolic pathways of S. pneumoniae serotype 23F were studied. The result indicates that this serotype consists of 97 metabolic pathways of which 74 are common with that of human, and 23 pathways are unique to the serotype 23F. After investigation and analysis of essentiality, nonhomology, subcellular localization, having drug targets, and enzymatic activity, four proteins were prioritized as druggable targets. These druggable proteins include UDP-N-acetylglucosamine 1-carboxyvinyltransferase, UDP-N-acetyl muramate dehydrogenase, D-alanine-D-alanine ligase, and alanine racemase that are found in S. pneumoniae serotype 23F. All these four proteins are essential, are nonhomologous with human proteins, have drug targets, and are located in cell cytoplasm. Therefore, the authors recommend these proteins to be used for efficient drug design against S. pneumoniae serotype 23F after experimental validation for essentiality and druggability.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Pré-Escolar , Idoso , Streptococcus pneumoniae/genética , Sorogrupo , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/genética , Resistência Microbiana a Medicamentos , Genômica , Sorotipagem
18.
Microbiol Spectr ; 12(1): e0357923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059623

RESUMO

IMPORTANCE: Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/microbiologia , Sorogrupo , Vacinas Pneumocócicas , Ásia
19.
Cell Chem Biol ; 31(2): 195-206, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052216

RESUMO

Streptococcus pneumoniae is a remarkably adaptable and successful human pathogen, playing dual roles of both asymptomatic carriage in the nasopharynx and invasive disease including pneumonia, bacteremia, and meningitis. Efficacious vaccines and effective antibiotic therapies are critical to mitigating morbidity and mortality. However, clinical interventions can be rapidly circumvented by the pneumococcus by its inherent proclivity for genetic exchange. This leads to an underappreciated interplay between vaccine and antibiotic pressures on pneumococcal populations. Circulating populations have undergone dramatic shifts due to the introduction of capsule-based vaccines of increasing valency imparting strong selective pressures. These alterations in population structure have concurrent consequences on the frequency of antibiotic resistance profiles in the population. This review will discuss the interactions of these two selective forces. Understanding and forecasting the drivers of antibiotic resistance and capsule switching are of critical importance for public health, particularly for such a genetically promiscuous pathogen as S. pneumoniae.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vacinas Pneumocócicas , Vacinação , Vacinas Conjugadas
20.
Eur J Clin Microbiol Infect Dis ; 43(1): 195-201, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981632

RESUMO

The aim of this study was to assess the reliability of rapid antigen detection tests (RADT) for Streptococcus pyogenes (GAS) and Streptococcus pneumoniae on pleural fluid samples for diagnosis of parapneumonic effusion/empyema (PPE) and their potential for improving pathogen identification rates. Sixty-three pleural samples were included from 54 patients on which GAS and S. pneumoniae RADT (BinaxNOW), culture, 16S rRNA PCR, and S. pneumoniae-specific PCR were performed. GAS RADT showed a sensitivity of 95.2% and a specificity of 100%. Pneumococcal RADT showed a sensitivity of 100% and specificity of 88.6%. Both RADT increased the pathogen identification rate in PPE compared to culture.


Assuntos
Empiema Pleural , Empiema , Derrame Pleural , Humanos , Streptococcus pneumoniae/genética , Streptococcus pyogenes/genética , RNA Ribossômico 16S , Reprodutibilidade dos Testes , Empiema/diagnóstico , Derrame Pleural/diagnóstico , Derrame Pleural/microbiologia , Empiema Pleural/diagnóstico , Empiema Pleural/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...